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Existence of beam-equation solutions with
strong damping and p(x)-biharmonic operator

Jorge Ferreira, Willian S. Panni,
Erhan Pı̇şkı̇n, Mohammad Shahrouzi∗

Abstract. In this paper, we consider a nonlinear beam equation with
a strong damping and the p(x)-biharmonic operator. The exponent
p(·) of nonlinearity is a given function satisfying some condition to be
specified. Using Faedo-Galerkin method, the local and global existence
of weak solutions is established with mild assumptions on the variable
exponent p(·). This work improves and extends many other results in
the literature.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 3) with a smooth boundary ∂Ω.
We consider the following problem

(1)


utt + ∆2

p(x)u−∆ut + f (x, t, ut) = g(x, t), in QT ,
u = 0, ∆u = 0, on ∂QT ,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

where ∆2
p(x) is the fourth-order operator called the p(x)-biharmonic operator

and is defined by ∆2
p(x)u = ∆(|∆u|p(x)−2∆u). We introduce, for 0 < T <∞,

QT = Ω× (0, T ), ∂QT = ∂Ω× (0, T ) and the functions p(·), f(·), g(·), u0(·)
and u1(·) which satisfy the following conditions.

The function p : Ω → (1,∞) is log-Hölder continuous, i.e., there are
constants c > 0 and 0 < δ < 1 such that

(2) |p(x)− p(y)| log |x− y| ≤ −c, ∀x, y ∈ Ω, |x− y| < δ.
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The function f ∈ C(Ω × [0,∞) × R) and satisfies for three positive con-
stants c1, c2 and c3, and for all (x, t, s) ∈ Ω× [0,∞)× R

(3)

f (x, t, s) s ≥ c1|s|q(x) − c2,

|f (x, t, s) | ≤ c3

(
|s|q(x)−1 + 1

)
,

where q : Ω→ (1,∞) is log-Hölder continuous. For all x ∈ Ω, we have that
p(·) and q(·) satisfy

1 < p− ≤ p(x) ≤ p+ <
N

2
,(4)

1 < q− ≤ q(x) ≤ q+ <
Np(x)

N − 2p(x)
,(5)

where

p− = ess inf
x∈Ω

p(x), p+ = ess sup
x∈Ω

p(x),

q− = ess inf
x∈Ω

q(x), q+ = ess sup
x∈Ω

q(x).

Furthermore, we consider that

u0 ∈W 2,p(x) (Ω) ∩W 1,2
0 (Ω) ,(6)

u1 ∈ L2 (Ω) ,(7)

g ∈ Lq′(x) (QT ) ,(8)

where q(·) and q′(·) are conjugated exponents satisfying 1
q(x) + 1

q′(x) = 1, for
all x ∈ Ω.

Partial differential equations with variable exponents have many appli-
cations in mathematical physics, for example, problems of filtration pro-
cesses in non-homogeneous porous media [1], wave equations [2, 3, 18], non-
linear beam equations [10], restoration and image processing [11–13], flow
of electro-rheological or thermo-rheological fluids [14–17], plate equations
with viscoelasticity, elasticity term or viscoelasticity term [19,20]. The p(x)-
biharmonic problems are at the intersection of these fields of study.

For the p(x)-biharmonic elliptical problems, Ge, Zhou andWu [21] studied
the problem

(9)

{
∆2
p(x)u = f(x, u), in Ω,

u = 0,∆u = 0, on ∂Ω,

where f(x, u) = λV (x)|u|q(x)−2u, λ is a positive real number, V is a weight
function and p, q : Ω → (1,∞) are continuous functions. Considering dif-
ferent situations concerning the growth rates involved in Problem (9), they
proved the existence of a continuous family of eigenvalues using the moun-
tain pass theorem and Ekeland’s variational principle.



J. Ferreira, W. S. Panni, E. Pı̇şkı̇n, M. Shahrouzi 125

Li and Tang [22] studied Problem (9) with Navier boundary condition and
for f(x, u) = λ|u|p(x)−2u+g(x, u), where λ ≤ 0 and g(x, u) is a Carathéodory
function. Using the mountain pass theorem and Fountain theorem, they
established the existence of at least one solution.

Kong, in [23], considered Problem (9), where f(x, u) = λb(x)|u|γ(x)−2u−
λc(x)|u|β(x)−2u−a(x)|u|p(x)−2u, with λ > 0 is a parameter and a, b, c, β, γ ∈
C(Ω) are nonnegative functions. He proved the existence of weak solutions
to the problem associated with Navier boundary conditions.

For the p(x)-biharmonic parabolic problem, recently Liu [24] studied the
problem 

ut + ∆2
p(x)u = |u|q(x)−2u, in Ω× (0, T ],

u = 0,∆u = 0, on ∂Ω× [0, T ],

u(x, 0) = u0(x), in Ω.

The author established the local existence of weak solutions and deter-
mined the finite-time blowup of solutions with nonpositive initial energy.
Regarding the equations with variable exponent nonlinearities, we also refer
to [4–9].

To the best of our knowledge, the present paper is the first to study the
p(x)-biharmonic hyperbolic problem related to the local and global existence
of beam equation solutions with strong damping.

The paper is organized as follows. In Section 2, we present some known
results concerning Lebesgue and Sobolev spaces with variable exponents
that shall be required. In Section 3, we prove the local and global existence
of weak solutions for Problem (1). Finally, in Section 4 we present the
conclusions of the paper.

2. Preliminaries

In this section, we present some results about Lebesgue and Sobolev
spaces with variable exponents, Lp(·)(Ω) and Wm,p(·)(Ω), respectively (see
[3,16] for more details). Let p : Ω→ [1,∞) be a measurable function, where
Ω is a domain of RN . We define the variable-exponent Lebesgue space by

Lp(·)(Ω) =

{
u : Ω→ R, mensurable in Ω; ρ(u) =

∫
Ω
|u(x)|p(x)dx <∞

}
.

Equipped with the following Luxemburg-type norm

‖u‖p(·) = ‖u‖Lp(·)(Ω) = inf
{
λ > 0; ρ

(u
λ

)
≤ 1
}
,

Lp(·)(Ω) is a Banach space (see [16]).
If p+ is finite, then p(x) is bounded and

(10)
min

{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(·)(Ω)

}
≤ ρ(u)

≤ max
{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(·)(Ω)

}
.
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The inequality (10) can be represented by

(11) min
{
ρ(u)

1
p− , ρ(u)

1
p+

}
≤ ‖u‖Lp(·)(Ω) ≤ max

{
ρ(u)

1
p− , ρ(u)

1
p+

}
.

Theorem 1 ([3, 16]). If p(x) and q(x) are variable exponents with p(x) ≥
q(x) for a.e. x in Ω, then Lp(·)(Ω) ↪→ Lq(·)(Ω).

Theorem 2 (Hölder’s inequality, see [3]). Let u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω)
with 1 < p(x) <∞ and 1

p(x) + 1
p′(x) = 1. Then

(12)

∫
Ω
|uv|dx ≤

(
1

p−
+

1

(p′)−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω)

≤ 2‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω).

The variable-exponent Sobolev space Wm,p(·)(Ω) is defined by

Wm,p(·)(Ω) =
{
u ∈ Lp(·)(Ω); Dαu ∈ Lp(·)(Ω), ∀α, |α| ≤ m

}
,

where m is a non-negative integer and Dα is the derivative in the sense of
distributions. The variable-exponent Sobolev space is a Banach space with
respect to the norm

‖u‖m,p(·) = ‖u‖Wm,p(·)(Ω) =
∑
|α|≤m

‖Dαu‖Lp(·)(Ω) .

We denote byWm,p(·)
0 (Ω) the closure of C∞0 (Ω) inWm,p(·)(Ω), where C∞0 (Ω)

is the space of infinitely differentiable functions with a compact support
contained in Ω. Throughout this paper, we denote by ci various positive
constants which may be different at different occurrences.

If X is a Banach space, then we denote by Lp(0, T ;X), with 1 ≤ p ≤ ∞,
the Banach space of measurable vector valued functions u : (0, T ) → X,
such that ‖u(t)‖X ∈ Lp(0, T ), together with the norms:

‖u‖Lp(0,T ;X) =

(∫ T

0
‖u(t)‖pX dt

) 1
p

, 1 ≤ p <∞,

‖u‖Lp(0,T ;X) = ess sup
0≤t<T

‖u(t)‖X , p =∞.

In addition, by C1(0, T ;X) we denote the space of continuously differentiable
functions on [0, T ] with values in X.

Theorem 3 ([16]). Let p : Ω→ (1,∞) be a bounded function and log-Hölder
continuous. If q : Ω → (1,∞), with q+ < N , is a bounded and measurable
function with

q(x) ≤ p∗ =
Np(x)

N − 2p(x)
, ∀x ∈ Ω,

then, there is a continuous embedding W 2,p(·)(Ω) ↪→ Lq(·)(Ω).
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Theorem 4 ([25]). Let p : Ω→ (1,∞) be a bounded function and log-Hölder
continuous. Then, there is a constant c such that for each u ∈W 2,p(·)

0 (Ω),

‖u‖
W

2,p(·)
0 (Ω)

≤ c ‖∆u‖Lp(·)(Ω) .

Theorem 5 ([3]). Let Ω ⊂ RN be a bounded domain and {ωi(x)}∞i=1 an
orthonormal base in L2(Ω), then for any ε > 0, there is a constant Nε > 0
such that

‖u‖L2(Ω) ≤

(
Nε∑
i=1

(∫
Ω
uωi(x)dx

)2
) 1

2

+ ε ‖u‖
W

1,p(·)
0 (Ω)

,

for all u ∈W 1,p(·)
0 (Ω), where 2 ≤ p <∞.

Theorem 6 ([26]). Let p : Ω → R be a bounded log-Hölder continuous
function with p− > 1. If {un}∞n=1 is bounded in Lp(·)(QT ) and un → u a.e.
in QT as n → ∞, then there exist a subsequence of un, still denoted by un,
such that un ⇀ u in Lp(·)(QT ) as n→∞.

Theorem 7 (Peano, see [27]). Let I = [a, b] be a real interval, D ⊆ RN and
a continuous function f : I×D → RN . If (t0, x0) ∈ I×D, C > 0 and T > 0
are such that [t0 − T, t0 + T ]×B(x0, C) ⊆ I ×D, where B(x0, C) is the ball
with center x0 and radius C, then the problem

(13)

{
x′(t) = f(t, x(t)),

x(t0) = x0,

with t ∈ [t0 − γ, t0 + γ], has at least one solution x, where γ ≤ min
{
T, CM

}
and M = max(t,x)∈[t0−T,t0+T ]×B(x0,C) |f(t, x)|.

3. Weak solutions

In this section, we establish the existence of weak solutions to Problem
(1), where the functions p, f , g, u0 and u1 satisfy the conditions given by
(2)-(8).

Definition 1. The scalar function u : QT → R is a weak solution to Problem
(1), if u satisfies simultaneously:

u ∈ L∞
(

0, T ;W
2,p(·)
0 (Ω)

)
∩ C

(
0, T ;W 1,2

0 (Ω)
)
,

∂u

∂t
∈ L∞

(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;W 1,2

0 (Ω)
)
∩ Lq(·) (QT )

and
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−
∫

Ω

∂u(x, 0)

∂t
ϕ(x, 0)dx−

∫
QT

∂u

∂t

∂ϕ

∂t
dxdt+

∫
QT

|∆u|p(x)−2 ∆u∆ϕdxdt

+

∫
QT

∇
(
∂u

∂t

)
∇ϕdxdt+

∫
QT

f

(
x, t,

∂u

∂t

)
ϕdxdt = e

∫
QT

g (x, t)ϕdxdt,

for all ϕ ∈ C1(0, T ;C∞0 (Ω)) with ϕ(x, T ) = 0.

We apply the Faedo-Galerkin method to Problem (1) and show the exis-
tence of weak solutions. For that, as stated in [28,29], we choose a sequence

ωj(x)}∞j=1 ⊂ C∞0 (Ω) such that C∞0 (Ω) ⊂
⋃∞
n=1 Vn

C2(Ω)
and {ωj(x)}∞j=1 is

a Hilbertian base in L2(Ω), where Vn = 〈ω1(x), ω2(x), . . . , ωn(x)〉. Due to
the fact that

⋃∞
n=1 Vn is dense in C2(Ω), it is well known that, if u0 ∈

W 2,p(·)(Ω)∩W 1,2
0 (Ω) and u1 ∈ L2(Ω), then there are ψn, φn ∈ Vn such that,

when n→∞,

(14)

{
ψn → u0 in W 2,p(·)(Ω) ∩W 1,2

0 (Ω),

φn → u1 in L2(Ω).

Multiplying the equation (1) by an arbitrary function v ∈ Vn, integrating
over Ω and using Green’s formula, we get∫

Ω

∂2u

∂t2
vdx+

∫
Ω
|∆u|p(x)−2∆u∆vdx+

∫
Ω
∇
(
∂u

∂t

)
∇vdx

+

∫
Ω
f

(
x, t,

∂u

∂t

)
vdx =

∫
Ω
g(x, t)vdx.

The Faedo-Galerkin method consists of finding a sequence of solutions

(15) un(x, t) =

n∑
j=1

ηnj(t)ωj(x) ∈ Vn

to the approximate problem

(16)

∫
Ω

∂2un
∂t2

vdx+

∫
Ω
|∆un|p(x)−2∆un∆vdx+

∫
Ω
∇
(
∂un
∂t

)
∇vdx

+

∫
Ω
f

(
x, t,

∂un
∂t

)
vdx =

∫
Ω
gn (x, t) vdx,

for all v ∈ Vn with gn ∈ C∞0 (QT ) and gn → g in Lq′(x)(QT ).
Substituting (15) in (16) and taking v = ωi with 1 ≤ i ≤ n, we obtain
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(17)

∫
Ω

n∑
j=1

η′′nj(t)ωj(x)ωi(x)dx

+

∫
Ω

∣∣∣∣∣∣
n∑
j=1

ηnj(t)∆ωj(x)

∣∣∣∣∣∣
p(x)−2 n∑

j=1

ηnj(t)∆ωj(x)

∆ωi(x)dx

+

∫
Ω

 n∑
j=1

η′nj(t)∇ωj(x)

∇ωi(x)dx

+

∫
Ω
f

x, t, n∑
j=1

η′nj(t)ωj(x)

ωi(x)dx

=

∫
Ω
gn (x, t)ωi(x)dx,

where η′nj(t) =
∂ηnj(t)
∂t and η′′nj(t) =

∂2ηnj(t)
∂t2

.
Defining the projection Pni(t, µ, ν) : [0, T ]× RN × RN → R as being

Pni (t, µ, ν) =

∫
Ω

∣∣∣∣∣∣
n∑
j=1

µnj(t)∆ωj(x)

∣∣∣∣∣∣
p(x)−2 n∑

j=1

µnj(t)∆ωj(x)

∆ωi(x)dx

+

∫
Ω

 n∑
j=1

νnj(t)∇ωj(x)

∇ωi(x)dx(18)

+

∫
Ω
f

x, t, n∑
j=1

νnj(t)ωj(x)

ωi(x)dx,

where 1 ≤ i ≤ n, and using the fact that Vn is a Hilbertian base in L2(Ω),
then we get

(19)



η′′n1(t) + Pn1

(
t, ηn1(t), η′n1(t)

)
= Gn1(t),

η′′n2(t) + Pn2

(
t, ηn2(t), η′n2(t)

)
= Gn2(t),

...
...

η′′nn(t) + Pnn
(
t, ηnn(t), η′nn(t)

)
= Gnn(t),

where
Gni(t) =

∫
Ω
gn (x, t)ωi(x)dx.

Problem (19) can be rewritten as

(20)

{
η′′(t) + Pn

(
t, η(t), η′(t)

)
= Gn(t),

η(0) = U0n, η′(0) = U1n,



130 Existence result for an equation with p(x)-biharmonic operator

with

η′′(t) =


η′′n1(t)
η′′n2(t)

...
η′′nn(t)

 ,

Pn
(
t, η(t), η′(t)

)
=


Pn1 (t, ηn1(t), η′n1(t))
Pn2 (t, ηn2(t), η′n2(t))

...
Pnn (t, ηnn(t), η′nn(t))

 ,

Gn(t) =


Gn1(t)
Gn2(t)

...
Gnn(t)

 .
We define

X(t) = η′(t),(21)
Y (t) = (η(t), X(t)),(22)

Zn(t) = (X(t), Gn(t)− Pn(t, η(t))) ,(23)

thus, Problem (20) becomes

(24)

{
Y ′(t) = Zn(t, Y (t)),

Y (0) = (U0n, U1n).

Before we prove the solution to Problem (24), we will make some remarks.

Remark 1.

(25)
∫

Ω
f

(
x, t,

∂un
∂t

)
∂un
∂t

dx ≥ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx− c4,

where c4 = c2|Ω| ≥ 0.

Proof. In fact, using the equation ((3))∫
Ω
f

(
x, t,

∂un
∂t

)
∂un
∂t

dx ≥
∫

Ω

(
c1

∣∣∣∣∂un∂t
∣∣∣∣q(x)

− c2

)
dx

= c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx− c4. �

Remark 2.

(26)
∫

Ω
|∆un|p(x)−2 ∆un∆

(
∂un
∂t

)
dx =

d

dt

|∆un|p(x)

p(x)
dx.
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Proof. Note that,

d

dt
|∆un|p(x) = p(x) |∆un|p(x)−2 ∆un∆

(
∂un
∂t

)
.

Thus, we obtain that∫
Ω
|∆un|p(x)−2 ∆un∆

(
∂un
∂t

)
dx

=

∫
Ω

1

p(x)

d

dt
|∆un|p(x) dx =

d

dt

∫
Ω

|∆un|p(x)

p(x)
dx. �

Remark 3.

(27)
Pn(t, η, η′)η′ ≥ d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx

+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx− c4.

Proof. Using the projection (18), we get

Pn(t, η, η′)η′ =

∫
Ω
|∆un|p(x)−2 ∆un

n∑
i=1

∆ωi(x)η′ni(t)dx

+

∫
Ω
∇
(
∂un
∂t

)
∇

n∑
i=1

ωi(x)η′ni(t)dx

+

∫
Ω
f

(
x, t,

∂un
∂t

) n∑
i=1

ωi(x)η′ni(t)dx.

So, it follows that

(28)

Pn(t, η, η′)η′ =

∫
Ω
|∆un|p(x)−2 ∆un∆

(
∂un
∂t

)
dx

+

∫
Ω
∇
(
∂un
∂t

)
∇
(
∂un
∂t

)
dx

+

∫
Ω
f

(
x, t,

∂un
∂t

)
∂un
∂t

dx.

Replacing (25) and (26) in (28), we conclude (27). �

Now, returning to Problem (24) and in the seek of simplicity, we are
omitting the arguments. Composing Problem ((24)) with Y , applying the
inner product and using (21), (22) and (23), we obtain that

(29) Y ′Y − η′η −Gnη′ = −Pnη′.

Applying the inequality (27) in (29),
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(30)

Y ′Y +
d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx

+c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx ≤ η′η +Gnη
′ + c4.

We know that η′η ≤ |η′||η| and applying Young’s inequality,

(31) η′η ≤
∣∣η′∣∣ |η| ≤ 1

2

∣∣η′∣∣2 +
1

2
|η|2

and

(32) Gnη
′ ≤ 1

2
|Gn|2 +

1

2

∣∣η′∣∣2 .
Replacing (3) and (32) in (30) results in

Y ′Y +
d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx

≤ 1

2

∣∣η′∣∣2 +
1

2
|η|2 +

1

2
|Gn|2 +

1

2

∣∣η′∣∣2 + c4.

By (22), we have

Y ′Y +
d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx

≤ |Y |2 +
1

2
|Gn|2 + c4.

Since {ωj}nj=1 is a Hilbertian basis, then |Gn|2 =
∫

Ω |gn|
2dx. Thus,

Y ′Y +
d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx

≤ |Y |2 +
1

2

∫
Ω
|gn|2 dx+ c4.

We know that 1
2
d
dt |Y |

2 = Y ′Y , then

(33)

1

2

d

dt
|Y |2 +

d

dt

∫
Ω

|∆un|p(x)

p(x)
dx

+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx

≤ |Y |2 +
1

2

∫
Ω
|gn|2 dx+ c4.

Integrating (33) from 0 to t and since t ≤ T ,
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(34)

1

2

d

dt

∫ t

0
|Y |2 dt+

∫
Ω

|∆un|p(x)

p(x)
dx−

∫
Ω

|∆un(x, 0)|p(x)

p(x)
dx

+

∫ T

0

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dxdt+ c1

∫ T

0

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dxdt

≤
∫ t

0
|Y (s)|2 ds+

1

2

∫ t

0

∫
Ω
|gn|2 dxds+ c4T.

By (14), un(x, 0) converges strongly inW 2,p(x)(Ω)∩W 1,2
0 (Ω), then |∆un(x, 0)|

is bounded by a constant, that is,

(35) |∆un(x, 0)| ≤ c5.

In addition, we have∫ T

0

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dxdt =

∥∥∥∥∇(∂un∂t
)∥∥∥∥2

L2(QT )

≤ c6,(36)

∫ T

0

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dxdt =

∥∥∥∥∂un∂t
∥∥∥∥q(x)

Lq(·)(QT )

≤ c7,(37)

1

2

∫ t

0

∫
Ω
|gn|2 dxds ≤ c8.(38)

Replacing (35), (36), (37) and (38) in (34), and defining c9(T ) = c4T + c5 +
c8 − c6 − c1c7, then

1

2

d

dt

∫ t

0
|Y |2 dt+

∫
Ω

|∆un|p(x)

p(x)
dx ≤

∫ t

0
|Y (s)|2 ds+ c9(T ).

Applying Gronwall’s lemma,

1

2

d

dt

∫ t

0
|Y |2 dt+

∫
Ω

|∆un|p(x)

p(x)
dx ≤ c10(T ).

Since p : Ω→ (1,∞), it follows that

(39)
∫

Ω

|∆un|p(x)

p(x)
dx ≤

∫
Ω
|∆un|p(x) dx.

Thus,

(40)
1

2

d

dt

∫ t

0
|Y |2 dt+

∫
Ω
|∆un|p(x) dx ≤ c10(T ).

We know that
∫

Ω |∆un|
p(x)dx ≥ 0, then

|Y (t)− Y (0)| ≤
√
c(T ),

where c(T ) = 2c10(T ).
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We denote

Mn = max
(t,Y ) ∈ [0,T ]×B(Y (0),

√
c(T ))

|Zn(t, Y )| and γn ≤ min

{
T,

√
c(T )

Mn

}
,

where B(Y (0),
√
c(T )) is the ball with center Y (0) ∈ R2N and radius

√
c(T ).

By definition Zn(t, Y ) is continuous with respect to (t, Y ), then applying
Peano’s Theorem 7 it follows that Problem (24) has a solution C1 over the
interval [0, γn], it implies that over the same interval Problem (20) has a
solution C2 denoted by η1

n(t).
Considering that η(γn) and ∂η(γn)

∂t are the initial values of Problem (20),
then we can repeat the previous process and over the interval [γn, 2γn] we
obtain a solution C2 denoted by η2

n(t).
We define

T =

[
T

γn

]
γn +

(
T

γn

)
γn, with 0 <

(
T

γn

)
< 1,

where
[
T
γn

]
and

(
T
γn

)
are, respectively, the integer part and the decimal

part of T
γn
. If we divide the interval [0, T ] in [(i − 1)γn, iγn], i = 1, 2, . . . , L

and [Lγn, T ], where L =
[
T
γn

]
, then there is a solution C2 over the interval

[(i−1)γn, iγn] denoted by ηin(t) and there is ηL+1
n (t) over [Lγn, T ]. Therefore,

we obtain a solution ηn(t) ∈ C2([0, T ]) as follows

ηn(t) =



η1
n(t), if t ∈ [0, γn] ,

η2
n(t), if t ∈ (γn, 2γn],

...
...

ηLn (t), if t ∈ ((L− 1)γn, Lγn],

ηL+1
n (t), if t ∈ (Lγn, T ].

Therefore, we conclude that Problem (1) has local solutions. Our next ob-
jective will be to prove that these solutions are global, before that we show
Lemmas 1 and 2 that assist in the development of this paper.

Lemma 1. The following estimates are uniform with respect to n for all
t ∈ [0, T ] ∫

Ω

∣∣∣∣∂un∂t
∣∣∣∣2 dx+

∫
Ω
|∆un|p(x) dx+

∫
Ω
|∇un|2 dx ≤ C1,(41) ∫

QT

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dxdt+

∫
QT

|∆un|p(x) dxdt+

∫
QT

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dxdt ≤ C2.(42)

Proof. Through equation (40) and since |Y (0)|2 is bounded, then we have

|Y (t)|2 +

∫
Ω
|∆un|p(x) dx ≤ c11.
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Using (15)), (22), the fact that ωj , 1 ≤ j ≤ n, is a Hilbertian base and
Poincaré’s inequality, we obtain (41). On the other hand, in (33) since |Y |2
and

∫
Ω |gn|

2dx are bounded, then

d

dt

∫
Ω

|∆un|p(x)

p(x)
dx+

∫
Ω

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dx+ c1

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dx ≤ c12.

Integrating from 0 to T and using QT = Ω× [0, T ], it follows that∫
QT

|∆un|p(x)

p(x)
dxdt+

∫
QT

∣∣∣∣∇(∂un∂t
)∣∣∣∣2 dxdt+ c1

∫
QT

∣∣∣∣∂un∂t
∣∣∣∣q(x)

dxdt ≤ c13.

From (39) and by hypothesis c1 ≥ 0, we conclude (42). �

Lemma 2. The following estimate is uniform with respect to n for all
t ∈ [0, T ],

(43) ‖|∆un|p(x)−2 ∆un‖Lp′(·)(QT ) +

∥∥∥∥f (x, t, ∂un∂t
)∥∥∥∥

Lq
′(·)(QT )

≤ C3.

Proof. By Lemma 1, we obtain∫
QT

∣∣∣|∆un|p(x)−2∇un
∣∣∣p′(x)

dxdt ≤
∫
QT

|∇un|p(x) dxdt ≤ c14.

Thus, ∥∥∥|∆un|p(x)−2∇un
∥∥∥
Lp
′(·)(QT )

≤ max


(∫

Ω
|∆un|p(x)dx

) p−−1

p−

,

(∫
Ω
|∆un|p(x)dx

) p+−1

p+

 ,

that is,

(44)
∥∥∥|∆un|p(x)−2∇un

∥∥∥
Lp
′(·)(QT )

≤ c15.

Using (3) and (37), it follows that

(45)
∥∥∥∥f (x, t, ∂un∂t

)∥∥∥∥
Lq
′(·)(QT )

≤ c16.

From inequalities (44) and (45), we conclude (43). �

Next, we prove our main result of the paper in the form of Theorem 8,
which guarantees the existence of weak global solutions to Problem (1).
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Theorem 8 (Existence of weak global solutions). Under the conditions
(2)–(8), Problem (1) has a weak solution in the sense of Definition 1.

Proof. Using Lemmas 1 and 2 there is a subsequence of un (still denoted by
un) and u such that

∂un
∂t

∗
⇀

∂u

∂t
in L∞(0, T ;L2(Ω)),

un
∗
⇀ u in L∞(0, T ;W

2,p(x)
0 (Ω)) ∩ L∞(0, T ;W 1,2

0 (Ω)),

∂un
∂t

⇀
∂u

∂t
in Lq(x)(QT ) ∩ L2(0, T ;W 1,2

0 (Ω)),

|∆un|p(x)−2∆un ⇀ ξ in Lp
′(x)(QT ),

f

(
x, t,

∂un
∂t

)
⇀ f

(
x, t,

∂u

∂t

)
in Lq

′(x)(QT ).

Our next objective will be to prove that there is a subsequence of un, such
that

∂un
∂t
→ ∂u

∂t
in L2(Ω) and un → u in Lq(x)(QT ).

Note that, from (15) and since ωj(x)}nj=1 is a Hilbertian base, then

(46)
∫

Ω

∂un
∂t

ωj(x)dx = η′nj(t) and
∫

Ω

∂2un
∂t2

ωj(x)dx = η′′nj(t).

Through Lemma 1, it follows that η′nj(t) is uniformly bounded in [0, T ].
Consider that 0 ≤ t1 < t2 ≤ T , integrating (20) from t1 to t2, using (46)
and defining Qt2t1 = Ω× [t1, t2], we get

(47)

∫
Ω

∂un(x, t2)

∂t
ωj(x)dx−

∫
Ω

∂un(x, t1)

∂t
ωj(x)dx

+

∫
Q
t2
t1

|∆un|p(x)−2∆un∆ωj(x)dxdt+

∫
Q
t2
t1

∇
(
∂un
∂t

)
∇ωj(x)dxdt

+

∫
Q
t2
t1

f

(
x, t,

∂un
∂t

)
ωj(x)dxdt =

∫
Q
t2
t1

gnωj(x)dxdt.

By (46), we obtain

(48)
∫

Ω

∂un(x, t2)

∂t
ωj(x)dx−

∫
Ω

∂un(x, t1)

∂t
ωj(x)dx ≤ |η′nj(t2)− η′nj(t1)|.

Replacing (48) in (47) and using Hölder’s inequality (12),
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|η′nj(t2)− η′nj(t1)|

≤ 2
∥∥∥|∆un|p(x)−2∆un

∥∥∥
Lp
′(·)

(
Q
t2
t1

) ‖∆ωj‖Lp(·)(Qt2t1)
+ 2

∥∥∥∥∇(∂un∂t
)∥∥∥∥

L2
(
Q
t2
t1

) ‖∇ωj‖L2
(
Q
t2
t1

) − 2 ‖gn‖Lq′(·)
(
Q
t2
t1

) ‖ωj‖Lq(·)(Qt2t1)

+ 2

∥∥∥∥f (x, t, ∂un∂t
)∥∥∥∥

Lq
′(·)

(
Q
t2
t1

) ‖ωj‖Lq(·)(Qt2t1) .
As ‖gn‖Lq′(·)(Qt2t1 )

‖ωj‖Lq(·)(Qt2t1 )
≥ 0 and by Poincaré’s inequality, it follows

that

|ηnj(t2)− ηnj(t1)|

≤ c17

∥∥∥|∆un|p(x)−2∆un

∥∥∥
Lp
′(·)

(
Q
t2
t1

) ‖∆ωj‖Lp(·)(Qt2t1)
+ c18

∥∥∥∥∇(∂un∂t
)∥∥∥∥

L2
(
Q
t2
t1

) ‖∇ωj‖L2
(
Q
t2
t1

)

+ c19

∥∥∥∥f (x, t, ∂un∂t
)∥∥∥∥

Lq
′(·)

(
Q
t2
t1

) ‖ωj‖Lq(·)(Qt2t1) .
By Lemmas 1 and 2, ‖|∆un|p(x)−2∆un‖Lp′(·)(Qt2t1 )

, ‖∇(∂un∂t )‖
L2(Q

t2
t1

)
and

‖f(x, t, ∂un∂t )‖
Lq
′(·)(Q

t2
t1

)
are bounded, then

|ηnj(t2)− ηnj(t1)|

≤ c20

(
‖∆ωj‖Lp(·)

(
Q
t2
t1

) + ‖∇ωj‖L2
(
Q
t2
t1

) + ‖ωj‖Lq(·)
(
Q
t2
t1

)) .
Through Theorems 1, 3 and 4, it follows that

|ηnj(t2)− ηnj(t1)|

≤ c21

(
‖∆ωj‖Lp(·)

(
Q
t2
t1

) + ‖∆ωj‖L2
(
Q
t2
t1

) + ‖∆ωj‖Lq(·)
(
Q
t2
t1

)) .
Using (11), we get
|ηnj(t2)− ηnj(t1)|

≤ c21

[
max

{
|t2 − t1|

1
p−

(∫
Ω
|∆ωj(x)|p(x) dx

) 1
p−

, |t2 − t1|
1
p+

(∫
Ω
|∆ωj(x)|p(x) dx

) 1
p+

}

+ max

{
|t2 − t1|

1
q−

(∫
Ω
|∆ωj(x)|q(x) dx

) 1
q−

, |t2 − t1|
1
q+

(∫
Ω
|∆ωj(x)|q(x) dx

) 1
q+

}

+ max

{
|t2 − t1|

1
2

(∫
Ω
|∆ωj(x)|2 dx

) 1
2

}]
.
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Thus, the sequence ηnj(t), with 1 ≤ n < ∞, is uniformly bounded and
equicontinuous for fixed j and n ≥ j in [0, T ]. Using Arzelà-Ascoli’s theorem
(see [30]), there is a subsequence such that ηnj(t) converges uniformly in
[0, T ] for some continuous function ηj(t) for each fixed j = 1, 2, . . . .

We define

ū(x, t) =
∞∑
j=1

ηj(t)ωj(x),

then for each j ∈ N, it follows that

lim
n→∞

∫
Ω

∂un
∂t

ωj(x)dx =

∫
Ω
ūωj(x)dx

uniformly in [0, T ]. With the completeness of ωj(x) we obtain that

∂un
∂t

⇀ ū in L2(Ω)

and uniformly in [0, T ] when n→∞. Furthermore, it turns out that ū = ∂u
∂t .

Using Lemma 1 and the Lebesgue’s dominated convergence theorem, we get

lim
n→∞

∫ T

0

(∫
Ω

(
∂un
∂t
− ∂u

∂t

)
ωj(x)dx

)2

dt = 0.

Through Theorem 5, there is a positive number Nε independent of n such
that ∥∥∥∥∂un∂t − ∂u

∂t

∥∥∥∥
L2(QT )

≤ 2

Nε∑
j=1

∫ T

0

(∫
Ω

(
∂un
∂t
− ∂u

∂t

)
ωj(x)dx

)2

dt

+ 2ε2

∫ T

0

∥∥∥∥∂un∂t − ∂u

∂t

∥∥∥∥2

W 1,2
0 (Ω)

dt.

Furthermore, by Lemma 1

lim sup
n→∞

∥∥∥∥∂un∂t − ∂u

∂t

∥∥∥∥
L2(QT )

≤ c22ε
2.

The arbitrariness of ε implies that
∂un
∂t
→ ∂u

∂t
in L2 (QT ) .

Consequently, there is a subsequence of un such that
∂un
∂t
→ ∂u

∂t
a.e. in QT .

For the continuity of f , we get

f

(
x, t,

∂un
∂t

)
→ f

(
x, t,

∂u

∂t

)
a.e. in QT .
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Our next objective will be to prove that un → u in Lq(x)(QT ). We know
that un ∈ W 1,2(QT ) and by Theorem 3 we can obtain a subsequence such
that un → u in L2(QT ) and a.e. in QT . By (4), Lemma 1 and Theorem 3,
we have ∫

Ω
|un|

Np(x)
N−2p(x) dx ≤ c23, ∀t ∈ [0, T ].

This implies that, ∫ T

0

∫
Ω
|un|

Np(x)
N−2p(x) dxdt ≤ c24.

For any measurable subset V ∈ QT , if we use Hölder’s inequality (12) and
that q(x) < p∗ = Np(x)

N−2p(x) , then∫
V
|un|q(x)dxdt ≤ 2 ‖|un|‖

L
p∗(·)
q(·) (QT )

‖1‖
L

p∗(·)
p∗(·)−q(·) (V )

≤ ‖1‖
L

p∗(·)
p∗(·)−q(·) (V )

.

Thus, the sequence |un|q(x), with 1 ≤ n < ∞, is equi-integrable in L1(QT ).
By Vitali’s Convergence theorem (see [31])

lim
n→∞

∫
QT

|un − u|q(x)dxdt = 0.

Therefore, un → u in Lq(x)(QT ).
Finally, our next objective will be to prove that ξ = |∆u|p(x)−2∆u. We

know that for all ϕ ∈ C1(0, T ;C∞0 (Ω)), we can choose a sequence ϕk ∈
C1(0, T ;Vk) such that ϕk → ϕ in C1,2(QT ), where for any u ∈ C1,2(QT ) its
norm is given by

‖u‖ = sup
|α|≤2, (x,t) ∈ QT

{
|Dαu|,

∣∣∣∣∂u∂t
∣∣∣∣} .

For all τ ∈ [0, T ], we have

lim
k→∞

lim
n→∞

∫
Qτ

∂2un
∂t2

ϕkdxdt

= lim
k→∞

lim
n→∞

(∫
Ω

∂un(x, τ)

∂t
ϕk(x, τ)dx−

∫
Ω

∂un(x, 0)

∂t
ϕk(x, 0)dx

)
− lim
k→∞

lim
n→∞

∫
Qτ

∂un
∂t

∂ϕk
∂t

dxdt

= lim
k→∞

(∫
Ω
ū(x, τ)ϕk(x, τ)dx−

∫
Ω
u1ϕk(x, 0)dx−

∫
Qτ

∂u

∂t

∂ϕk
∂t

dxdt

)
.

=

∫
Ω
ū(x, τ)ϕ(x, τ)dx−

∫
Ω
u1ϕ(x, 0)dx−

∫
Qτ

∂u

∂t

∂ϕ

∂t
dxdt.

= lim
n→∞

∫
Qτ

∂2un
∂t2

ϕdxdt,
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where Qτ = Ω× (0, τ). By (16), it follows that∫
Qτ

∂2un
∂t2

ϕkdxdt+

∫
Qτ

|∆un|p(x)−2∆un∆ϕk +∇
(
∂un
∂t

)
∇ϕkdxdt

+

∫
Qτ

f

(
x, t,

∂un
∂t

)
ϕkdxdt =

∫
Qτ

gnϕkdxdt.

Thus,

(49)
lim
n→∞

∫
Qτ

∂2un
∂t2

ϕdxdt

=

∫
Qτ

gϕ− ξ∆ϕ−∇
(
∂u

∂t

)
∇ϕ− f

(
x, t,

∂u

∂t

)
ϕdxdt.

In addition, for any ψ(x) ∈ C∞0 (Ω), we have∫
Ω

(ū(x, τ)− u1)ϕdx = lim
n→∞

∫
Ω

(
∂un(x, τ)

∂t
− ∂un(x, 0)

∂t

)
ψ(x)dx

= lim
n→∞

∫ τ

0

∫
Ω

∂2un
∂t2

ψ(x)dxdt

=

∫
Qτ

gϕ− ξ∆ϕ−∇
(
∂u

∂t

)
∇ϕ− f

(
x, t,

∂u

∂t

)
ϕdxdt,

→ 0, (τ → 0).

Consequently, ū(x, t) is weakly continuous in L2(Ω), that is, we have ū(x, t) ∈
Cw(0, T ;L2(Ω)). For all η ∈ C1([0, T ]) with η(T ) = 0 and η(0) = 1, we get∫

QT

∂un
∂t

η(t)ωi(x)dxdt = −
∫

Ω
un(x, 0)η(0)ωi(x)dx

−
∫
QT

un(x, t)η′(t)ωi(x)dxdt.

If n→∞, then∫
Ω

(u(x, 0)− u0)ωi(x)dx = 0, with i = 1, 2, . . .

By the completeness of basis ωi in L2(Ω), we conclude that u(x, 0) = u0.
Due to ∇un

∗
⇀ ∇u in L∞(0, T ;L2(Ω)) and ∂un

∂t ⇀ ∂u
∂t in L2(0, T ;W 1,2

0 (Ω)),
just as was done by Lions [32] we assume that u ∈ C(0, T ;W 1,2

0 (Ω)) and that
there is a subsequence of un such that ∇un(x, T ) ⇀ ∇u(x, T ) in (L2(Ω))N .
Thus, ∫

Ω
|∇u(x, T )|2dx ≤ lim inf

n→∞

∫
Ω
|∇un(x, T )|2dx.
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We take ϕ = uk in equation (49) and if k →∞, then

(50)

∫
Ω
ū(x, T )u(x, T )dx−

∫
Ω
u1u0dx+

∫
QT

(
ξ∆u+∇

(
∂u

∂t

)
∇u
)
dxdt

−
∫
QT

∣∣∣∣∂u∂t
∣∣∣∣2 dxdt+

∫
QT

f

(
x, t,

∂u

∂t

)
udxdt =

∫
QT

gudxdt.

Multiplying (20) by ηnj , adding j from 1 to n and integrating from 0 to T ,
we obtain∫ T

0

∫
Ω

∂2un
∂t2

undxdt+

∫ T

0

∫
Ω
|∆un|p(x) +∇

(
∂un
∂t

)
∇undxdt

+

∫ T

0

∫
Ω
f

(
x, t,

∂un
∂t

)
undxdt =

∫ T

0

∫
Ω
gn(x, t)undxdt.

Therefore,

0 ≤
∫ T

0

∫
Ω

(
|∆un|p(x)−2∆un − |∆u|p(x)−2∆u

)
(∆un −∆u) dxdt.

=

∫ T

0

∫
Ω
gnun − f

(
x, t,

∂un
∂t

)
un −∇

(
∂un
∂t

)
∇undxdt

−
∫

Ω

∂un(x, T )

∂t
un(x, T )dx+

∫
Ω

∂un(x, 0)

∂t
un(x, 0)dx+

∫ T

0

∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣2 dxdt

−
∫ T

0

∫
Ω

(
|∆un|p(x)−2∆un∆u+ |∆u|p(x)−2∆u

)
(∆un −∆u) dxdt.

By equation (50), we have

lim sup
n→∞

∫ T

0

∫
Ω

(
|∆un|p(x)−2∆un∆u+ |∆u|p(x)−2∆u

)
(∆un −∆u) dxdt

≤
∫ T

0

∫
Ω
gu− f

(
x, t,

∂u

∂t

)
u− ξ∆udxdt− 1

2

∫
Ω
|∇u(x, T )|2dx

+
1

2

∫
Ω
|∇u(x, 0)|2dx−

∫
Ω
ū(x, T )u(x, T )dx+

∫
Ω
u1u0dx+

∫ T

0

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dxdt.

= 0.

Thus,

lim
n→∞

∫ T

0

∫
Ω

(
|∆un|p(x)−2∆un − |∆u|p(x)−2∆u

)
(∆un −∆u) dxdt = 0.
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We define

Q1 =
{

(x, t) ∈ QT ; p(x) ≥ 2
}
,

Q2 =
{

(x, t) ∈ QT ; 1 < p(x) < 2
}
,

then, when n→∞,∫
Q1

|∆un −∆u|p(x)dxdt

≤ c25

∫
Q1

(
|∆un|p(x)−2∆un − |∆u|p(x)−2∆u

)
(∆un −∆u) dxdt→ 0.

Moreover,∫
Q2

|∆un −∆u|p(x)dxdt

≤ c26

∥∥∥∥∥[(|∆un|p(x)−2∆un − |∆u|p(x)−2∆u
)

(∆un −∆u)
] p(x)

2

∥∥∥∥∥
L

2
p(·) (Q2)∥∥∥∥∥(|∆un|p(x) + |∆u|p(x)

) 2−p(x)
2

∥∥∥∥∥
L

2
2−p(·) (Q2)

→ 0.

Consequently, we obtain ∆un → ∆u in Lp(x)(QT ), then there is a subse-
quence of un such that ∆un → ∆u a.e. in QT . Besides that,

|∆un|p(x)−2∆un → |∆u|p(x)−2∆u a.e. for (x, t) ∈ QT .

Using Theorem 6, we obtain that ξ = |∆u|p(x)−2∆u.
Therefore, we conclude the proof of the theorem of the existence of weak

global solutions to Problem (1). �

4. Conclusion

We studied a nonlinear fourth-order beam equation with a strong dissi-
pation and a lower order perturbation with the p(x)-biharmonic operator
considering Ω ⊂ RN , (N ≥ 3), a bounded domain. Using Faedo-Galerkin
method, we proved the local and global existence of weak solutions with
mild assumptions on the variable exponent p(·).
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